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Abstract. We have studied the critical behaviour of a doped Mott insulator near the metal-insulator
transition for the infinite-dimensional Hubbard model using a linearized form of dynamical mean-field
theory. The discontinuity in the chemical potential in the change from hole to electron doping, for U
larger than a critical value Uc, has been calculated analytically and is found to be in good agreement with
the results of numerical methods. We have also derived analytic expressions for the compressibility, the
quasiparticle weight, the double occupancy and the local spin susceptibility near half-filling as functions
of the on-site Coulomb interaction and the doping.

PACS. 71.10.Fd Lattice fermion models (Hubbard model, etc.) – 71.27.+a Strongly correlated electron
systems; heavy fermions – 71.30.+h Metal-insulator transitions and other electronic transitions

1 Introduction

The Mott-Hubbard metal-insulator transition (MIT) is
an important but difficult many-body problem which has
been studied extensively [1]. Significant progress has been
achieved in recent years through the application of dy-
namical mean-field theory (DMFT) [2] to generic micro-
scopic models, such as the single-band Hubbard model.
In this approach the lattice problem is mapped onto an
impurity problem where a correlated impurity site is em-
bedded in an effective uncorrelated medium that has to be
determined self-consistently. The mapping can be shown
to be exact for certain models with local interactions in
the limit of infinite dimensions [3], and constitutes an ap-
proximate method for finite-dimensional models. Several
techniques have been applied to deal with the effective im-
purity problem, including iterated perturbation theory [2],
non-crossing approximation [4], projective self-consistent
method (PSCM) [5], quantum Monte Carlo (QMC) [6],
exact diagonalization (ED) [7] and numerical renormaliza-
tion group (NRG) [8,9] techniques. These methods have
different strengths and limitations, and apparent discrep-
ancies between some of the results have led to a contro-
versial discussion on the nature of the MIT in the infinite-
dimensional Hubbard model at low temperatures [10–14].
Recently, however, most of these differences have been re-
solved [15].
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However, not all aspects of the transition have been in-
vestigated thoroughly. In particular, the critical behaviour
of the doped Mott insulator has not received so much at-
tention as it is more difficult to solve the model off half-
filling using purely numerical methods. Iterated perturba-
tion theory, which provides a reasonable description of the
MIT at half-filling [2], is less suitable for calculations in
the doped case since ad hoc modifications of the approach
become necessary away from half-filling [16].

Recently, we have shown [17,18] that a linearized form
of the DMFT provides a simple and attractive technique
to obtain approximate but analytical results for the crit-
ical regime. Using this approach for the single- and for
the two-band Hubbard model, it has been demonstrated
that the predictions for the critical coupling of the MIT
are in very good agreement with most accurate numerical
estimates.

Here we show that the linearized DMFT can be ex-
tended to the non-symmetric case. This allows for a
comprehensive analytical investigation of the critical be-
haviour as a function of doping. In particular, we have
calculated the discontinuity in the chemical potential on
changing from hole to electron doping. The analytic re-
sult is in good agreement with the results of numerical
methods, NRG as well as ED. It also agrees well with the
result of PSCM [5]. In addition, we have analytically de-
termined the compressibility, the quasiparticle weight, the
double occupancy and the local spin susceptibility near
half-filling as functions of the on-site Coulomb interaction
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and the doping. These are difficult to calculate using the
numerical methods mentioned above.

2 Linearized dynamical mean-field theory

We consider the single-band Hubbard model at zero tem-
perature on the Bethe lattice [19] with infinite connectiv-
ity q 7→ ∞

H = −
∑
〈i,j〉,σ

ti,j
(
c†iσcjσ + h.c.

)
+ U

∑
i

ni↑ni↓. (1)

The nearest-neighbor hopping is scaled as usual: ti,j =
t√
q [3]. For the single-band Hubbard model on the Bethe

lattice, the DMFT self-consistency equation is simply
given by [2]

G0(z)−1 = z + µ− t2G(z), (2)

where G(z) is the local Green’s function of the Hubbard
model and G0(z) = (z−εf−∆(z))−1 is the non-interacting
Green’s function of an effective single-impurity Ander-
son model defined by the hybridization function ∆(z).
The DMFT self-consistency cycle starts with a guess for
the hybridization function [20]. The solution of the cor-
responding impurity model yields the impurity Green’s
function G(z) to be identified with the on-site Green’s
function of the lattice model. From the self-consistency
equation (2) G0(z) and thus a new hybridization function
∆(z) can be calculated. The cycles have to be repeated
until self-consistency is achieved.

The application of numerical methods for solving the
effective impurity problem (see Ref. [13], for example)
have established that at moderate coupling the density
of states in the metallic phase is characterized by a three-
peak structure consisting of the lower and the upper Hub-
bard bands and a quasiparticle resonance near the Fermi
energy in addition. The quasiparticle peak is more or less
isolated from the Hubbard bands. On approaching the
Mott-insulating state with increasing interaction strength,
the quasiparticle peak becomes extremely narrow and fi-
nally vanishes for U = Uc. The critical interaction strength
Uc = Uc2 should be distinguished from the critical interac-
tion Uc1 at which the insulating solution disappears. Using
numerical methods to solve the effective impurity problem
(see Ref. [13], for example), one obtains Uc1 < Uc2 and (for
T = 0) the metallic solution is stable against the insulat-
ing one in the whole coexistence region Uc1 < U < Uc2.

The linearized dynamical mean-field theory [17,18] fo-
cuses on the critical regime close to the actual transition
point at Uc = Uc2. Here, the quasiparticle peak is approx-
imated by a single pole at the Fermi level, i.e. G(z) = Z

z
near the Fermi level with a small weight Z → 0 as U → Uc.
Correspondingly, the hybridization function ∆(z) is a one-
pole function ∆(z) = V 2

z . This effectively represents an
approximate mapping of the model (1) onto a two-site or

zero-bandwidth Anderson model [21]

H2−site = εf
∑
σ

f†σfσ + Uf†↑f↑f
†
↓f↓

+ εc
∑
σ

c†σcσ + V
∑
σ

(
f†σcσ + c†σfσ

)
(3)

with εc = 0 and εf = −µ. The hybridization strength V
has to be determined from the self-consistency equation
which takes the simple form

t2Z = V 2. (4)

For a more detailed discussion and for an extension of the
approach to the two-band model see references [17,18].

Now we calculate the critical value of U for the MIT
at half-filling. In this case, the chemical potential is fixed
to µ = U

2 due to particle-hole symmetry. Close to the
MIT V is small, and V → 0 for U → Uc. The weight Z
can be calculated from the impurity spectral function and
is given by [21] (see also Appendix A)

Z = 36
V 2

U2
, (5)

up to second order in V . From equations (4, 5), we obtain
the critical value

Uc = 6t. (6)

This result is in good agreement with the best numeri-
cal estimates of NRG (Uc = 5.88t) [13] and ED (Uc =
5.87t) [18] as well as PSCM (Uc = 5.84t) [2].

When we solve the self-consistency equation (4) by it-
eration, V 2 increases exponentially with iteration number
for U < Uc. In this case, the single-pole approximation
for ∆(z) breaks down. On the other hand, for U > Uc,
the hybridization strength V 2 decreases exponentially to
give the self-consistent value V 2 = 0 corresponding to the
insulating solution.

3 Critical behaviour of the single-band
Hubbard model

3.1 Physical quantities

For more extensive studies of the critical region of the
Mott MIT, we need the result for the quasiparticle weight
up to fourth order in V (see Appendix A),

Z = V 2F (U, µ)− V 4G(U, µ), (7)

where

F (U, µ) =
5

2µ2
+

4
µ(U − µ)

+
5

2(U − µ)2
, (8)

G(U, µ) =
29
2µ4

+
24

µ3(U − µ)
+

22
µ2(U − µ)2

+
24

µ(U − µ)3
+

29
2(U − µ)4

· (9)



Y. Ōno et al.: Critical behaviour near the Mott metal-insulator transition 285

To determine the doping dependence, we also calculate
the impurity occupation number up to second order in V
(see Appendix A)

n = 1 + V 2D(U, µ), (10)

where

D(U, µ) =
2

(U − µ)2
− 2
µ2
· (11)

We note that, for µ
>
=
<
U
2 , D

>
=
< 0 and thus n

>
=
< 1. The double

occupancy d = 〈n̂↑n̂↓〉 is given by (see Appendix A)

d =
2V 2

(U − µ)2
, (12)

up to second order in V . We also calculate the static local
spin susceptibility, χ0 ≡ χii(0), with

χii(ω) =
∫ ∞
−∞

dteiωtiθ(t)
〈 [
Ŝi
−

(t), Ŝi
+
] 〉
, (13)

where Ŝi
±

are the spin raising and lowering operators at
the same site i and where we set (gµB)2/2 = 1. At T = 0,
χ0 is given by

χ0 =
∑
n

|〈En|Ŝ+|E0〉|2 + |〈En|Ŝ−|E0〉|2
En −E0

, (14)

where |En〉 are the eigenstates with the eigenenergies En,
and |E0〉 is the ground state. By using the results for the
2-site Anderson model in equation (14), we obtain (see
Appendix A)

χ0 =
1

2V 2
(

1
µ + 1

U−µ

)(1 +O
(
V 2
))
. (15)

We now invoke the self-consistency equation (4) and sub-
stitute V 2 from equation (4) into equations (7, 10, 12, 15).
This yields

Z(U, µ) =
(
F (U, µ)− 1

t2

)
1

t2G(U, µ)
, (16)

n(U, µ) = 1 + Z(U, µ)t2D(U, µ), (17)
d(U, µ) = 2t2Z(U, µ)/(U − µ)2, (18)
χ0(U, µ) = µ(U − µ)/

(
2Ut2Z(U, µ)

)
. (19)

3.2 Critical behaviour at half-filling

First we discuss the critical behaviour near the Mott MIT
at half-filling [17]. The chemical potential is fixed to µ = U

2
due to particle-hole symmetry. In fact, equation (10) yields
n(U, U2 ) = 1 for all U as D(U, U2 ) = 0 from equation (11).
Substituting µ = U

2 into equations (16, 18, 19), we obtain

Z(U) =
18
11

(
1− U

Uc

)
, (20)

d(U) =
4
11

(
1− U

Uc

)
, (21)

χ0(U) =
11
24t

(
1− U

Uc

)−1

, (22)

near Uc for U < Uc. The result for Z, equation (20), has
already been obtained by Bulla and Potthoff [17]. Using
equation (17) the compressibility, κ = (∂n∂µ )

U
, is given by

κ(U) = t2Z(U)
∂D(U, µ)

∂µ

∣∣∣∣
µ=U

2

, (23)

at half-filling for U < Uc. Substituting equations (11, 20)
into equation (23), we obtain

κ(U) =
16
33t

(
1− U

Uc

)
, (24)

near Uc for U < Uc.
Due to local charge fluctuations the double occupancy

is finite even in the insulating phase with d(U) → 0 only
for U → ∞. The linearized DMFT, however, predicts a
vanishing double occupancy for U → Uc. This indicates
that the approach misses these local fluctuations. We nev-
ertheless believe that the trends in the metallic phase are
correct on the mean-field level. This situation may be anal-
ogous to the mean-field theory of ferromagnetism in the
Heisenberg model, where the fluctuations in the magneti-
zation and short-range order cannot be taken into account.
We also note that the local spin susceptibility diverges in
the limit of the MIT U → Uc. Even in this limit, how-
ever, the uniform spin susceptibility is finite due to the
effect of the super-exchange interaction J = 2t2/U [2].

3.3 Discontinuity in the chemical potential

For U < Uc, the chemical potential µ as a function of n
is continuous at n = 1. For U > Uc, on the other hand,
µ(n) has a discontinuity at n = 1: At half-filling the sys-
tem is a Mott insulator for U > Uc and for µ− < µ < µ+

where µ− = µ−(U), µ+ = µ+(U), and µ−(U) < µ+(U).
For U > Uc, a finite ∆µ = µ+−µ− indicates a finite insu-
lating gap ∆Eg in the single-particle excitation spectrum.
Note, however, that for a correlated system the disconti-
nuity ∆µ may be different (smaller) compared with the
single-particle gap ∆Eg. The jump ∆µ can be calculated
within the linearized DMFT exploiting the fact that the
MIT is characterized by a vanishing quasiparticle weight.
Setting Z = 0 in equation (16), we obtain an equation to
determine the MIT point:

F (U, µ) =
1
t2
· (25)

In Figure 1, F (U, µ) is plotted as a function of µ for several
values of U . When U < Uc, F (U, µ) > 1

t2 for all µ, and the
system is metallic. When U > Uc, F (U, µ) = 1

t2 for µ = µ±
(µ+ > µ−), and the system is insulating for µ− < µ < µ+

while it is metallic for µ < µ− and µ > µ+. We notice
that, for U = Uc, F (U, µ) as a function of µ is at its
minimum for µ = U

2 consistent with the considerations in
reference [18].
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1
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Fig. 1. The µ dependence of F (U,µ) defined in equation (8)
for several values of U . The critical interaction is Uc = 6t. We
set t = 1.

Using equation (8) we can solve equation (25) to get
the explicit U dependence of µ± for U > Uc

µ± =
U

2
± U

2

1 +
1

18u2
−

√
10
9u2

+
(

1
18u2

)2
 1

2

,

(26)

where u ≡ U
Uc

> 1. For the discontinuous jump ∆µ =
µ+ − µ− we obtain

∆µ = U

1 +
1

18u2
−

√
10
9u2

+
(

1
18u2

)2
 1

2

· (27)

Note that we have n → 1 with n < 1 (n > 1) from equa-
tion (17) for µ → µ− (µ → µ+) from the metallic side.
For U > Uc close to Uc, equation (27) yields

∆µ =
6√
38
Uc

√
U

Uc
− 1. (28)

In Figure 2 we have plotted ∆µ, as given by equation (27),
as a function of U .

We have also calculated ∆µ numerically by using the
NRG and the ED method. We solved the full DMFT equa-
tion numerically and obtained the occupation number n as
a function of µ. When µ approaches µ+ (µ−) from above
(below), n approaches unity from above (below) and n = 1
for µ− < µ < µ+. We also confirmed that, at µ = µ±, the
groundstate changes from singlet (µ < µ− or µ > µ+) to
doublet (µ− < µ < µ+). The ED calculations were done
for finite cluster sizes ns up to ns = 11. An extrapolation
of the results yields the ns →∞ extrapolated value of ∆µ
as shown in the inset of Figure 2.

As can be seen from Figure 2, the result from the lin-
earized DMFT is in good agreement with the results of
the NRG and the ED. It also agrees well with the re-
sult from the PSCM [5]. We note that the result for µ±

6 7 8
0

2

4

0 0.01 0.02 0.03
1

2

3

4

∆µ

ns
 –2

U=6.5

U=7

U=8ns=11
8

6
10

∆µ

U

LDMF
ED

NRG
PSCM

Fig. 2. The discontinuity of the chemical potential ∆µ =
µ+ − µ− as a function of U for U > Uc, as obtained from
the linearized DMFT (solid line), from the exact diagonaliza-
tion method (closed circles), from the projective self-consistent
method (open squares) [5] and from the numerical renormal-
ization group method (crosses). Inset shows an extrapolation
of the ED results with system sizes ns = 6, 8, 10 and 11. We
set t = 1.

from the linearized DMFT seems to be less satisfactory
for the strong-coupling limit U � Uc. This may be ex-
plained by the fact that here µ± is very close to the edge
of the lower or upper Hubbard band, respectively, and
that the effect of the bandwidth, which is neglected in the
linearized DMFT [17], becomes important [22].

Concluding, we have the following picture of the tran-
sition: In the case of half-filling and U > Uc, the lower
and the upper Hubbard bands are well separated by the
Mott-Hubbard gap ∆Eg in the single-particle excitation
spectrum. As a function of n there is a finite jump ∆µ in
the chemical potential at n = 1. As U approaches Uc from
above, ∆µ→ 0 as given by equation (28), and the system
becomes metallic. The single-particle gap ∆Eg closes dis-
continuously at Uc as the quasiparticle peak appears at
the Fermi energy between the Hubbard bands. For U just
less than Uc there is no gap, i.e. ∆Eg = 0, but still there
are well separated lower and upper Hubbard bands. Simi-
larly, for fixed U > Uc and for µ approaching µ−(U) from
above (µ+(U) from below), the gap ∆Eg closes discon-
tinuously due to the appearance of quasiparticle “in-gap
states” at the Fermi energy while there are still well sepa-
rated Hubbard bands. This picture is confirmed by more
extensive NRG and ED calculations and is essentially the
same as given by Fisher et al. [5] (see also Ref. [2]).

3.4 Doping dependence

Finally, we discuss the critical behaviour of the doped
metallic system for U > Uc close to the Mott insulating
phase. Substituting equation (26) into equation (17), we
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obtain the doping dependence of the quasiparticle weight
for n→ 1 and U > Uc

Z(U, n) = C(U)|n− 1|, (29)

where the coefficient C(U) is given by

C(U)−1 = t2|D(U, µ±)| = 32t2
U∆µ

[U2 − (∆µ)2]2
· (30)

Due to particle-hole symmetry we obtain the same result
for both, n < 1 and n > 1.

Eliminating Z from equations (16, 17), the occupation
number can be expressed as a function of U and µ. For
U > Uc and close to the MIT we have

n(U, µ) = 1 +
(
F (U, µ)− 1

t2

)
D(U, µ)
G(U, µ)

· (31)

This also yields the compressibility in the limit n→ 1 for
U > Uc

κ(U) =
D(U, µ±)
G(U, µ±)

∂F (U, µ)
∂µ

∣∣∣∣
µ=µ±

· (32)

Again, due to particle-hole symmetry, the result equa-
tion (32) for κ is the same for both, n < 1 and n > 1.

Substituting equations (26, 29) into equation (18), the
double occupancy is obtained as a function of U and n for
n→ 1 and U > Uc

d(U, n) = α±(U)|n− 1|, (33)

where

α±(U)−1 =
16(U − µ±)2U∆µ

[U2 − (∆µ)2]2
, (34)

and where + and − stand for n > 1 and n < 1, respec-
tively. For a given interaction strength U we find α+ > α−.
This means that when doping the system away from half-
filling, the increase of the double occupancy for n > 1 is
stronger than its decrease for n < 1. As mentioned be-
fore, there is a finite double occupancy even for n = 1 and
U > Uc in contrast to the result equation (33) from the
linearized DMFT. Nevertheless, we believe that the trend
in the metallic state, i.e. the coefficient α±, is physically
significant.

Substituting equations (26, 29) into equation (19), the
local spin susceptibility is obtained as a function of U and
n for n→ 1 and U > Uc

χ0(U, n) = β(U)|n− 1|−1, (35)

where

β(U) =
4∆µ

U2 − (∆µ)2
· (36)

In Figure 3, C−1, κ, α−1
± and β, as given by equa-

tions (30, 32, 34, 36), are plotted as functions of U . To

6 8 10
0

0.2

0.4

0.6

U

κ

C–1

α+
–1/10

α–
–1/10

β

Fig. 3. The compressibility κ, the coefficient C of the quasi-
particle weight Z = C|n − 1|, the coefficient α± of the double

occupancy d = α±|n−1| with ± for n >
< 1 and the coefficient β

of the local spin susceptibility χ0 = β|n− 1|−1 near half-filling
as functions of U for U > Uc = 6t obtained from the linearized
DMFT. We set t = 1.

see the critical properties near Uc, we substitute equa-
tion (28) into equations (30, 32, 34, 36), and obtain for
U > Uc

C(U)−1 =
16

3
√

38

√
U

Uc
− 1, (37)

κ(U) =
32
33t

(
U

Uc
− 1
)
, (38)

α±(U)−1 =
24√
38

√
U

Uc
− 1, (39)

β(U) =
4√
38t

√
U

Uc
− 1. (40)

The critical properties near Uc as resulting from the lin-
earized DMFT are similar to those of the Brinkman-Rice
approach [23,24]. However, the coefficients are different.

4 Conclusion and discussion

We have shown that analytical calculations of the critical
behaviour in the parameter region close to the Mott MIT
can be carried out by using a simple linearized version of
the DMFT. This approach gives rather reliable estimates
for the critical parameters at the transition point. Consid-
ering the single-band Hubbard model, we have calculated
the discontinuity in the chemical potential µ for the change
from hole to electron doping. The analytical result is in
good agreement with the numerical estimates from the
PSCM, the NRG and the ED. The results for small hole
and electron doping and for U > Uc can be interpreted in
terms of quasiparticle in-gap states which lie within the
Mott-Hubbard gap. We have also made predictions for the
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compressibility, the quasiparticle weight, the double occu-
pancy and the local spin susceptibility near half-filling as
functions of U and the doping. It would be interesting to
see whether these predictions can be confirmed by some of
the more comprehensive numerical realizations of DMFT,
and whether there is any experimental evidence in support
of them [25].

The simplicity of our approach should also enable sim-
ilar calculations to be made for more general models, such
as multi-band Hubbard-type models, where we can have
both Mott-Hubbard type and charge-transfer type metal-
insulator transitions [26]. Even for more complex multi-
band models one might be able to obtain analytical ex-
pressions as has been demonstrated recently for the five
critical parameters in the two-band Hubbard model [18].
This makes the linearized DMFT a powerful technique
for exploring general trends and phase diagrams within
a high-dimensional parameter space. An interesting ques-
tion to examine would be the role of in-gap states in the
two-band Hubbard model (equivalent to the d-p model)
near the MIT. In this parameter regime the results of the
model should be relevant for a description of the behaviour
of weakly doped high-Tc materials.
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Appendix A

Here we discuss the two-site Anderson model equa-
tion (3) [21] in the limit V → 0. We assume that the
conduction level is between the atomic f -level and the
upper Hubbard level εf < εc < εf + U. Then we define

∆ ≡ εc − εf > 0, (41)
W ≡ εf + U − εc > 0. (42)

The one-electron eigenstates

|E±〉 = a±f
+
σ |0〉+ b±c

+
σ |0〉, (43)

correspond to the eigenenergies

E± =
1
2

(
εc + εf ±

√
(εc − εf )2 + 4V 2

)
. (44)

For small hybridization strength V 2 � ∆, equation (44)
is simplified as

E+ = εc +
V 2

∆
− V 4

∆3
, (45)

E− = εf −
V 2

∆
+
V 4

∆3
, (46)

to fourth order in V , with the corresponding eigenstates

|E+〉 = α

{
V

∆

(
1− V 2

∆2

)
f+
σ + c+σ

}
|0〉, (47)

|E−〉 = α

{
f+
σ −

V

∆

(
1− V 2

∆2

)
c+σ

}
|0〉, (48)

where

α2 = 1− V 2

∆2
+ 3

V 4

∆4
· (49)

Similarly, we obtain the three-electron (one-hole)
eigenenergies

Ē± =
1
2

(
3εc + 3εf + U ±

√
(εf + U − εc)2 + 4V 2

)
.

(50)

For small hybridization strength V 2 � W , equation (50)
is simplified as

Ē+ = εc + 2εf + U +
V 2

W
− V 4

W 3
, (51)

Ē− = 2εc + εf −
V 2

W
+
V 4

W 3
, (52)

to fourth order in V . The corresponding eigenstates are

|Ē+〉 = ᾱ

{
− V
W

(
1− V 2

W 2

)
fσ + cσ

}
|4〉, (53)

|Ē−〉 = ᾱ

{
fσ +

V

W

(
1− V 2

W 2

)
cσ

}
|4〉, (54)

where

ᾱ2 = 1− V 2

W 2
+ 3

V 4

W 4
, (55)

and |4〉 = f+
↑ f

+
↓ c

+
↑ c

+
↓ |0〉.

The two electron states can be classified as singlets
or triplets. In the triplet state, the spatial part of the
wavefunction is antisymmetric and the interaction U has
no effect. Then the total energy of the triplet state is given
by E+ + E− = εc + εf . There are three possible singlet
states which can be written by the linear combination of
the states,

|φ1〉 =
1√
2

(c+↑ f
+
↓ − c+↓ f+

↑ )|0〉, (56)

|φ2〉 = c+↑ c
+
↓ |0〉, (57)

|φ3〉 = f+
↑ f

+
↓ |0〉. (58)

The eigenenergies are given by the solutions of the
equation,∣∣∣∣∣∣

E − εc − εf −
√

2V −
√

2V
−
√

2V E − 2εc 0
−
√

2V 0 E − 2εf − U

∣∣∣∣∣∣ = 0. (59)
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To fourth order in V , the ground state eigenenergy is

E0 = εc + εf − 2V 2

(
1
∆

+
1
W

)(
1− 2V 2

∆2
− 2V 2

W 2

)
,

(60)

and the corresponding singlet ground state is

|E0〉 = α0

{
|φ1〉 −

√
2V
∆

(
1− 2V 2

∆2
− 2V 2

∆W

)
|φ2〉

−
√

2V
W

(
1− 2V 2

W 2
− 2V 2

∆W

)
|φ3〉

}
, (61)

with

α2
0 = 1− 2V 2

(
1
∆2

+
1
W 2

)
+ 4V 4

(
3
∆4

+
2

∆3W
+

2
∆2W 2

+
2

∆W 3
+

3
W 4

)
· (62)

Now we calculate the f -electron Green’s function of this
model. When a f, ↑ electron is removed from the ground
state |E0〉, there are two possible final states: |E+〉 and
|E−〉. Correspondingly, there are two possible single-hole
excitations with excitation energies,

E+ −E0 = −εf + V 2

(
3
∆

+
2
W

)
−V 4

(
5
∆3

+
4

∆2W
+

4
∆W 2

+
4
W 3

)
≡ −ε1, (63)

E− −E0 = −εc + V 2

(
1
∆

+
2
W

)
−V 4

(
3
∆3

+
4

∆2W
+

4
∆W 2

+
4
W 3

)
≡ −ε2, (64)

to fourth order in V . The matrix elements for these tran-
sitions are

〈E+|f↑|E0〉 =
αα0√

2

{
1− 2V 2

∆W

×
(

1− V 2

∆2

)(
1− 2V 2

W 2
− 2V 2

∆W

)}
,

〈E−|f↑|E0〉 =
αα0√

2

{
−V
∆

(
1− V 2

∆2

)
−2V
W

(
1− 2V 2

W 2
− 2V 2

∆W

)}
,

which yield the transition probabilities:

|〈E+|f↑|E0〉|2 =
1
2
− V 2

2

(
3
∆2

+
4

∆W
+

2
W 2

)
+
V 4

2

×
(

17
∆4

+
24

∆3W
+

22
∆2W 2

+
24

∆W 3
+

12
W 4

)
≡ w1, (65)

|〈E−|f↑|E0〉|2 =
V 2

2

(
1
∆2

+
4

∆W
+

4
W 2

)
− V 4

2

×
(

5
∆4

+
16

∆3W
+

22
∆2W 2

+
32

∆W 3
+

24
W 4

)
≡ w2, (66)

to fourth order in V .
When a f, ↑ electron is added to the ground state |E1〉,

possible final states are |Ē−〉 and |Ē+〉. Correspondingly,
there are two possible single-particle excitations with ex-
citation energies,

Ē− −E0 = εc + V 2

(
2
∆

+
1
W

)
−V 4

(
4
∆3

+
4

∆2W
+

4
∆W 2

+
3
W 3

)
≡ ε3, (67)

Ē+ −E0 = εf + U + V 2

(
2
∆

+
3
W

)
−V 4

(
4
∆3

+
4

∆2W
+

4
∆W 2

+
5
W 3

)
≡ ε4, (68)

to fourth order in V . The matrix elements for these tran-
sitions are

〈Ē−|f↑|E0〉 =
ᾱα0√

2

{
V

W

(
1− V 2

W 2

)
+

2V
∆

(
1− 2V 2

∆2
− 2V 2

∆W

)}
,

〈Ē+|f↑|E0〉 =
ᾱα0√

2

{
1− 2V 2

∆W

×
(

1− V 2

W 2

)(
1− 2V 2

∆2
− 2V 2

∆W

)}
,

which yield the transition probabilities:

|〈Ē−|f↑|E0〉|2 =
V 2

2

(
4
∆2

+
4

∆W
+

1
W 2

)
− V 4

2

×
(

24
∆4

+
32

∆3W
+

22
∆2W 2

+
16

∆W 3
+

5
W 4

)
≡ w3, (69)

|〈Ē+|f↑|E0〉|2 =
1
2
− V 2

2

(
2
∆2

+
4

∆W
+

3
W 2

)
+
V 4

2

×
(

12
∆4

+
24

∆3W
+

22
∆2W 2

+
24

∆W 3
+

17
W 4

)
≡ w4, (70)
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to fourth order in V .
From equations (63–70), we obtain the f -electron

Green’s function which has four poles:

Gσ(z) =
4∑
i=1

wi
z − εi

· (71)

In the limit V → 0, high-energy poles at ε1 ≈ εf and
ε4 ≈ εf + U have large residues w1 ≈ w2 ≈ 1

2 , while low-
energy poles merge together at ε2 ≈ ε3 ≈ 0 with small
total weight Z ≡ w2 + w3:

Z = V 2

(
5

2∆2
+

4
∆W

+
5

2W 2

)
−V 4

(
29

2∆4
+

24
∆3W

+
22

∆2W 2
+

24
∆W 3

+
29

2W 4

)
,

to fourth order in V . The number of f electrons, n =
2(w1 + w2), is given by

n = 1 − 2V 2

(
1
∆2
− 1
W 2

)
+ 4V 4

(
3
∆4

+
2

∆3W
− 2
∆W 3

− 3
W 4

)
,

to fourth order in V . By using equation (61), we obtain the
double occupancy, d = 〈E0|n̂f↑n̂f↓|E0〉, to fourth order
in V

d =
2V 2

W 2

{
1− V 2

(
2
∆2

+
4

∆W
+

6
W 2

)}
·
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